

Adaptive ability of fish population by climate change in a biodiversity hotspot, Peninsular India**C.Vijayakumar# and V. Aldous. J. Huxley ***

#Department of Zoology, St. Andrew's College, Gorakhpur- 273 015, Uttar Pradesh, India

*Department of Zoology, Thiru Vi. Ka. Government College, Tiruvarur, Tamil Nadu. E.mail : aldobiotech@gmail.com

Corresponding author E. mail: drvijay_99@rediffmail.com

Received: 02 April, 2021 / Accepted: 21 May, 2021/ Published Online:15 June, 2021<http://www.gtrpcompany.com/ijab.htm>**Citation:** Vijayakumar C. Huxley VAJ. Adaptive ability of fish population by climate change in a biodiversity hotspot, Peninsular India.. Int.J.Appl. Bioresearch,2021;40(2):8-9.**© Gayathri Technological Research and Publication, 2021****Report**

Ecosystems are increasingly affected by anthropogenic impacts such as land-use change and climate change, altering the structure and function of biological communities [1]. Changes in morphology is mostly due to evolution and environmental changes [2-5]. This will result in variation in both intraspecific and interspecific in freshwater fishes [6]. Morphological variations will occur in parameters like shape, diets and predation [7-9] and diet availability [10]. Variations in shape in fishes are based on the habitat changes, which will lead to deeper body or stream lined body. This will manure in swimming ability [11-14].

In fishes, head, body and fin characters will depict the feeding and habitat dwelling in aquatic system. For example, longer snout (snout length) are essential in bottom feeding, larger eyes are meant for finding out the prey in the bottom, slender peduncle (peduncle length) will help the fish to move swiftly in faster water like in fast mountain streams and dorsal fin base length will help the fish to maneuverability. Stream lined body with lesser values of body depth show that they move quickly in the water column. Greater body depth reveals that the fish will be confined to the bottom. A recently described freshwater fish belongs to the family Cyprinidae (Order: Cypriniformes) from a biodiversity hotspot, the Western Ghats of peninsular India was collected after 12 years from the same river basin. This species, *Hypselobarbus keralaensis* [15] belongs to the genus *Hypselobarbus* endemic to Western Ghats streams and rivers. Earlier it was designated as *H.kurali*. Ecomorphological characters used for locomotion and feeding were compared between the same species after a gap of 12 years. Based on the morphological data it can be predicted that the population has the adaptive ability due to climate change. Data were from the specimens from Manonmaniam Sundaranar University Museum of Natural History (MSUMNH) and also from Collections of M. Arunachalam (CMA).

References

1. Tonkin JD, Poff, NL, Bond NR, Horne A, Merritt DM, Reynolds LV, Olden JD, Ruhi A, Lytle DA. Prepare river ecosystems for an uncertain future. *Nature*, 2019; 570: 301–303.
2. Felsenstein J. The theoretical population genetics of variable selection and migration. *Ann Rev Genet*. 1976; 10:253–280.
3. Franssen NR.. Anthropogenic habitat alteration induces rapid morphological divergence in a native stream fish. *Evol Appl*. 2011; 4:791–804.
4. Green SJ, Cote IM. Trait-based diet selection: prey behavior and morphology predict vulnerability to predationin reef fish communities. *J Anim Ecol*. 2014; 83:1451–1460.
5. Santos A, Araujo F. Evidence of morphological differences between *Astyanaxbimaculatus* (Actinopterygii: Characidae) from reaches above and below dams on a tropical river. *Environ Biol Fishes*. 2014; 98:183–191.
6. Alexander HJ, Taylor JS., Wu, SSA, Breden F. Parallel evolution and variance in the guppy (*Poeciliareticulata*) over multiple spatial and temporal scales. *Evolution*. 2006; 60:2352-2369.
7. Reznick DN. The impact of predation on life history evolution in Trinidadian guppies: genetic basis of observed life history patterns. *Evolution*. 1982; 36:1236–1250.
8. Bronmark C, Miner, JG. Predator-induced phenotypical change in body morphology in Crucian carp. *Science*, 1992. 258:1348–1350.
9. Godin JJ, Briggs SE. Female mate choice under predation risk in the guppy. *AnimBehav*. 1996; 51:117–130.
10. Showalter AM, Vanni MJ Gonzalez MJ. Ontogenetic diet shifts produce trade-offs in elemental imbalance in bluegill sunfish. *Freshw Biol*. 2016; 61:800–813.
11. Law T, Blake R. Comparison of the fast-start performances of closely related, morphologically distinct three spine sticklebacks (*Gasterosteus* spp.). *J Exp Biol*. 1996; 199:2595–2604.
12. Zimmerman MS. A field study of brook stickleback morphology: multiple predators and multiple traits. *Can J Zool*. 2007; 85:250–260.
13. Langerhans RB, Chapman LJ, Dewitt TJ. Complex phenotype–environment associations revealed in an EastAfrican cyprinid. *J Evol Biol*. 2007; 20:1171–1181

14. Langerhans RB, Layman, CA, Langerhans AK. Dewitt TJ. Habitat-associated morphological divergence in two Neotropical fish species. *Biol J Linn Soc.* 2003; 80:689–698.
15. Arunachalam M, Chinnaraja S, Mayden RL. Description of a new species of *Hypseleotris* from Kerala region of Western Ghats, peninsular India (Cypriniformes: Cyprinidae). *Iran. J. Ichthyol.* 2016; 3(2): 73–81.